Troisieme partie:
Oscillateurs harmoniques

Notions abordeées :
- 3.1 Ressort, loi de Hooke
- 3.2 Oscillations amorties
- 3.3 Oscillations forceées, résonance

Buts:
- se familiariser avec la modélisation des ressorts (ou élastiques)
- se familiariser avec les equations différentielles de I'oscillateur harmonique
- Savoir traiter des systemes de masses attachées a des ressorts
- Comprendre le phénomene de résonance et ses consequences/applications



3.1 Oscillateurs harmonigues

- Modele valable, en premiere approximation, pour tout phénomene
oscillatoire ou vibratoire (petits mouvements périodiques autour d’une
position d’équilibre stable)

- Exemples:
- masse pendue a un ressort —> démo pendule & ressort 106
- pendule simple, pendule de torsion — démo pendule

résonateurs a quartz (montres)
circuits électriques RLC
vibrations (corde de guitare, aile d’avion, pudding, ...) — démo diapason 214

oscillations du champ ¢électromagnétique (lumicre ...)
etc ...

Remarque: un systeme physigue avec un mouvement périodique permet de mesure

les intervalles de temps précisément en comptant le nombre de périodes
— les systemes périodiques sont notre meilleure horloge



https://auditoires-physique.epfl.ch/experiment/20/allongement-dun-ressort-proportionnalite
https://auditoires-physique.epfl.ch/experiment/483/pendule-simple
https://auditoires-physique.epfl.ch/experiment/214/battements-acoustiques-de-deux-diapasons

3.1 Force d’un ressort, lol de Hooke

- La force exercée par un ressort est proportionnelle a son déplacement
(élongation ou compression) par rapport a sa position de repos

Ressé’ o= Ressort allonge
avide — _ . .
(longueur — | par un poids Force de rappel :
naturelle) ———
— — —>
— F = —kAx
Position — .
3 vide = L_oi de Hooke
_> —> o
Aaj —kAX _ ’ .
k = constante élastique
2 ~Masse m du ressort [N/m]
M a I’équilibre
- Notes :
.
mg - ce modele n’est valable que pour
mi = —kAx + mg des petits allongements
S - 0on suppose que le ressort a une
A I’¢quilibre ¥ = 0 = masse nulle

—kAx+mg =0 = Ax=%g



3.1 Oscillateur harmonigue a une dimension

(cas idéal, sans frottements)
m On considere le probléeme
= A unidimensionnel, et on écrit
F =—kAx uniguement les équations du
mouvement selon X
/ 2
/ >
O
\ Origine O de I’axe x définie comme
T > la position d’équilibre
(position a laquelle F = 0)
- Lol de Hooke: F = —kx 5> | my = —kr
. 2eme loi de Newton: F = ma

equation différentielle

But: connaissant k, m et les conditions initiales (x, et vy a t = 0),
déterminer x(t) pour tout temps t



3.1 Resolution éq. différentiel: mix = —kx

Solution analytique :
On pose: x(t) = x,cos(wqt) = x(0) = x,

e v(t) =dx/dt = —x,wosin(wgt) = v(0) = v,

. a(t) = % =X = —x wicos(wot) = ¥ = —wix(t)
c c () = —(k doit avoir - k Pulsation propre de
omme X(t) = —(k/m)x(t), on doit avoir : wo = A/ — Poscillateur Libre
m
mi=—kx < ¥+ wi’x=0

On peut se rendre facilement compte que la fonction sin(wyt) est aussi solution

Solution générale de: ¥ + wy?x = 0
x(t) = Acos(wgt) + Bsin(wgt) ou x(t) = Csin(wyt + @)
Deux constantes d’intégration a déeterminer en utilisant les conditions initiales:

A=x0etB =vy/w, ou C? = x5+ (vg/wp)? ettan(p) = wyxy/Vo



3.1 Resolution éq. différentiel: mix = —kx

On vérifie que :
x(t) = Acos(wgt) + Bsin(wgt) < x(t) = Csin(wyt + @)

x(t) = Csin(wyt + @) = C[sin(wgyt) cos @ + cos(wyt) sin @]

A=Csing
B =Ccosp

Si a I’instant t = 0 on a x(0) = x, et v(0) = v, on trouve que:
X(O) == A = XO

x(t) = —Awg sin(wyt) + Bwg cos( wyt)

sin(atf)=

[sin a cos  + cos a sin (]
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(mais pas m,)




3.1 EX.: le pendule mathématique

ORI o 3
Repére cartésien fixe: OX y L
\ UV T
Repére en rotation:  0¢& &, /gb‘ e
2¢me |oj de Newton Z F=md ¢
En coordonnées cylindriques d =7 = (p- pg?) é,+(2pp+ pp)e, +ze, Xy g
F=mg
(—) y ( y
T-é,+mg-é,=m(p—pp?)e, —T + m g cos ¢ = mLep?
< ) . — )
mg- é,=m(pp + 2pp)é,

\

| —mgsing = mLg

Le movement du pendule ne depend pas de lamasse —> — gsing = L

Pour des petites oscillations ¢ >0 = sing~¢ = gb - — %gb — —wégb

Equation d’un oscillateur harmonique avec wy = \/%

@ (t) = Acos(wyt + @,) de période T = 2= om |*

N.B.: wy n’est pas ¢
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3.2 Oscillateur harmonigue amorti

- En pratique, tout oscillateur s’amortit a cause des frottements

- Modele:

- on ajoute une force de frottement proportionnelle
a la vitesse: Frrot = —bv
(signe « — »: la force s’oppose au mouvement)

- coefficient de frottement b

. Deuxiéme loi de Newton: F + Fr,,; = md

mxr = —kx — bx

- démo pendule
de torsion


https://auditoires-physique.epfl.ch/experiment/47/oscillations-amorties-pendule-de-torsion

3.2 Resolution eq. différentiel: m¥ = —kx — bx

Solution analytique :

mix = —kx —bx = ¥+ 2yx + wix =0 aveCy:%etw():\/%

- On pose: x(t) = e*t
e v(t) =x = ae®
e a(t) =i = a?e®t

e a?e® +2yae® + wie® =0 = a’+2ya+wi=0
Il s’agit d’une équation de deuxiéme degré en a dont le discriminant est: A= y? — w3

Trois cas de figure selon que le discriminant soit positif, nul ou négatif
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3.2 Solution oscillateur harmonigue amorti

X+ 2yx%x + wix =0 avecy=% ; w0=\/§ s A=y? — w§

Y < wog = A<0 (cassous-critique)

z(t) = e " [Acos(wit) + Bsin(wit)]

avec wp = \/w(z) — 72 < wp

Y = wg = A =0 (cascritique)

r(t) = e " [A + Bt \
\

Y > wo = A>0 (cassur-critique)
z(t) = e " [Aexp(wat) + Bexp(—wat)]

avec wy = \/72 — w

» A et B sont les constantes d’intégration, a déterminer par les conditions initiales
e w, et w, sont appelées "pulsation effective" ou "pseudo-pulsation”
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3.2 Oscillateur harmonigue amorti
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3.3 Oscillations forcées

- En pratique tout oscillateur s’amortit; mais on peut
« entretenir » les oscillations a I’aide d’une force exterieure

- Exemples:
- BalanQOire pOUSSée par un enfant - https://auditoires-physique.epfl.ch/experiment/78
. . - https://auditoires-physique.epfl.ch/experiment/57
- Voiture (avec suspension) passant sur des bosses - - diapasons 214
- Atome (électron lié) recevant une onde électromagnétique

- démos:
- résonance de deux masses 233

Tremblement de terre

Station
de mesure

Ondes P

Ondes de
volume

Ondes S

Ondes L

BENNEEE.

Oscillations dans un plan perpendiculaire
Ondes 4 i drection do propagation Wi xS s

A .
Ondes sismiques l
intensité dé“Oissante Ondes f
Source: Préfecture des Hautes-Alpes

Oscillations dans un plan vertical avec

un mouvement eliptique det particuies TN
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https://auditoires-physique.epfl.ch/experiment/233/resonance-de-deux-masses-acoustique-et-optique
https://auditoires-physique.epfl.ch/experiment/78
https://auditoires-physique.epfl.ch/experiment/57
https://auditoires-physique.epfl.ch/experiment/214/battements-acoustiques-de-deux-diapasons

3.3 Oscillateur harmonigue amorti et forcé

- Modele:

:’T"’ R

AMMNY

N\ /
O E; fr(/ X

- on ajoute une force périodique : Foyt = fcos(wt)

Example: f = IN etw = 0.2s71

- Deuxieme loi de Newton:
ﬁ + F_>f1"0t + ﬁext — mC_l)

mx = —kx — bx + Foxt

14



3.3 Solution oscillateur harmonique forcé

i} L o2 _b .|k
X+ 2yx + wix = f coswt avecy—Zm,wO—\/;

Solution de 1’oscillateur libre (amorti): _ . :
tend vers 0 aprés la phase transitoire Solution de la phase stationnaire

N e

[ A 4 A
x(t) = Xtransitoire (t) + C cos(wt + 90)
f 1 2
C= tang = e 5

T m 7 _
\/(a)(z, — w?2)2 + 4y2w?2 W= = Wy

Résonance : frequence a la quelle on observe le maximum de I’amplitude C

dC f 1

=0 = w :\/(U(%_ZVZ =  Chpax ==
4@ Moy Jwi -y

N.B.: C est fonction de w? donc om
cherche le minimum par rapport a w?
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3.3 Oscillateur

4:_03 =045’ E 4 - =0.6 s7
harmonique force N 1 S
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k - 1 N/m; '4 __I | | | | | | | | '4 __I | | | ] | | | | '4 _—I | ] | ] | | | I
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initiales | | | 1 | 1 | | | IZOI 1 I40I
t[s] t[s] t[s]

Phase stationnaire:

- La pulsation o, est amortieE 4
et le systeme oscille avec = 2
la pulsation imposee ®

- Ne dépend plus des
conditions initiales

- L’amplitude dépend de o !
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3.3 Oscillateur
harmonigue
forcé et (pas ou
peu) amorti

Note: I’échelle
verticale n’est pas la
méme que
précedemment

Le systeme répond de
maniere beaucoup plus
selective en fréguence.

A la résonance,
I’amplitude devient tres
grande.
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3.3 Phénomenes de résonance

Résonances indésirables :

Tremblement de terre

Amortisseurs d’une voiture

Structure de génie civil
(ponts, batiments, ...)

Résonances désirables :

- Circuits électriques dans
un « tuner » (radio)

- Tuyaux d’orgue
- Balancoire de jardin

Suspension du tambour d’une essoreuse a linge

— démos: pendules sur élastique
vibration de tiges plastiques
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https://auditoires-physique.epfl.ch/experiment/57/resonance-mecanique-pendules-sur-elastique
https://auditoires-physique.epfl.ch/experiment/206/vibration-de-tiges-plastiques-resonance

