
Notions abordées :

- 3.1 Ressort, loi de Hooke

- 3.2 Oscillations amorties

- 3.3 Oscillations forcées, résonance

Buts: 

- se familiariser avec la modélisation des ressorts (ou élastiques)

- se familiariser avec les équations différentielles de l'oscillateur harmonique

- Savoir traiter des systèmes de masses attachées à des ressorts

- Comprendre le phénomène de résonance et ses conséquences/applications
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Troisième partie:
Oscillateurs harmoniques



• Modèle valable, en première approximation, pour tout phénomène 

oscillatoire ou vibratoire (petits mouvements périodiques autour d’une 

position d’équilibre stable)

• Exemples:

- masse pendue à un ressort → démo pendule à ressort 106

- pendule simple, pendule de torsion → démo pendule

- résonateurs à quartz (montres)

- circuits électriques RLC

- vibrations (corde de guitare, aile d’avion, pudding, …) → démo diapason 214

- oscillations du champ électromagnétique (lumière …)

- etc ...
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3.1 Oscillateurs harmoniques

Remarque: un système physique avec un mouvement périodique permet de mesure 
les intervalles de temps précisément en comptant le nombre de périodes

→ les systèmes périodiques sont notre meilleure horloge

https://auditoires-physique.epfl.ch/experiment/20/allongement-dun-ressort-proportionnalite
https://auditoires-physique.epfl.ch/experiment/483/pendule-simple
https://auditoires-physique.epfl.ch/experiment/214/battements-acoustiques-de-deux-diapasons


• La force exercée par un ressort est proportionnelle à son déplacement 

(élongation ou compression) par rapport à sa position de repos
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3.1 Force d’un ressort, loi de Hooke

• Force de rappel :

•

k = constante élastique 

du ressort [N/m]

• Notes :

- ce modèle n’est valable que pour 

des petits allongements

- on suppose que le ressort a une 

masse nulle

Loi de Hooke

Ressort
à vide

(longueur
naturelle)

Ressort allongé 
par un poids

Position 
à vide

Masse 𝑚
à l’équilibreො𝑥

𝑚 Ԧ𝑔

−𝑘∆𝑥

𝑚 ሷ𝑥 = −𝑘∆𝑥 +𝑚𝑔

À l’équilibre ሷ𝑥 = 0 

−𝑘∆𝑥 +𝑚𝑔 = 0  ∆𝑥 =
𝑚

𝑘
𝑔



• Loi de Hooke: 𝐹 = −𝑘𝑥

• 2ème loi de Newton: 𝐹 = 𝑚𝑎
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3.1 Oscillateur harmonique à une dimension

équation différentielle

(cas idéal, sans frottements)

But: connaissant 𝑘, 𝑚 et les conditions initiales (𝑥0 et 𝑣0 à 𝑡 = 0),

déterminer 𝑥(𝑡) pour tout temps 𝑡

⇒

𝑚

O
Origine O de l’axe ො𝑥 définie comme 

la position d’équilibre

(position à laquelle 𝐹 = 0)

On considère le problème 

unidimensionnel, et on écrit 

uniquement les équations du 

mouvement selon ො𝑥

ො𝑥

Ԧ𝐹 = −𝑘∆𝑥
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Solution analytique :

• On pose: 𝑥(𝑡) = 𝑥0cos(𝜔0𝑡) ⇒ 𝑥(0) = 𝑥0

• 𝑣(𝑡) = 𝑑𝑥/𝑑𝑡 = −𝑥0𝜔0sin(𝜔0𝑡) ⇒ 𝑣 0 = 𝑣0

• 𝑎 𝑡 =
𝑑𝑣

𝑑𝑡
= ሷ𝑥 = −𝑥0𝜔0

2cos 𝜔0𝑡 ⇒ ሷ𝑥 = −𝜔0
2𝑥(𝑡)

• Comme ሷ𝑥(𝑡) = −(𝑘/𝑚)𝑥(𝑡), on doit avoir : Pulsation propre de 
l’oscillateur libre

3.1 Résolution éq. différentiel: 𝑚 ሷ𝑥 = −𝑘𝑥

On peut se rendre facilement compte que la fonction s𝑖𝑛(𝜔0𝑡) est aussi solution

Solution générale de: ሷ𝑥 + 𝜔0
2𝑥 = 0

𝑥(𝑡) = 𝐴cos(𝜔0𝑡) + 𝐵sin(𝜔0𝑡) ou 𝑥(𝑡) = 𝐶sin(𝜔0𝑡 + 𝜑)

Deux constantes d’intégration à déterminer en utilisant les conditions initiales:

𝐴 = 𝑥0 et 𝐵 = 𝑣0/𝜔0 ou 𝐶2 = 𝑥0
2 + (𝑣0/𝜔0)

2 et tan(𝜑) = 𝜔0𝑥0/𝑣0

𝑚 ሷ𝑥 = −𝑘𝑥  ሷ𝑥 + 𝜔0
2𝑥 = 0
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On vérifie que :

𝑥(𝑡) = 𝐴cos(𝜔0𝑡) + 𝐵sin(𝜔0𝑡)  𝑥(𝑡) = 𝐶sin(𝜔0𝑡 + 𝜑)

𝑥 𝑡 = 𝐶sin 𝜔0𝑡 + 𝜑 = 𝐶[sin 𝜔0𝑡 cos𝜑 + cos 𝜔0𝑡 sin 𝜑]

𝐴 = 𝐶 sin𝜑
𝐵 = 𝐶 cos𝜑

3.1 Résolution éq. différentiel: 𝑚 ሷ𝑥 = −𝑘𝑥

Si à l’instant t = 0 on a x(0) = x0 et v(0) = v0 on trouve que:

𝑥 0 = 𝐴 = 𝑥0

ሶ𝑥 𝑡 = −𝐴𝜔0 sin 𝜔0𝑡 + 𝐵𝜔0 cos(𝜔0𝑡)

ሶ𝑥 0 = 𝐵𝜔0 = 𝑣0  𝐵 =
𝑣0

𝜔0

Ou

𝐶2 = 𝐴2 + 𝐵2 = 𝑥0
2 +

𝑣0
2

𝜔0
2

tan𝜑 =
𝐴

𝐵
=
𝑥0𝜔0

𝑣0

sin(𝛼+𝛽)=
[sin 𝛼 cos 𝛽 + cos𝛼 sin 𝛽]
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3.1 Dépendance par rapport aux conditions initiales

Note:

l’amplitude et la phase 

des oscillations 

dépendent des 

conditions initiales, 

(mais pas ω0) 

Période

Fréquence
cos(ω0t) sin(ω0t) – cos(ω0t)

T

(au repos)

T

𝑥(𝑡) = 𝐴cos(𝜔0𝑡) + 𝐵sin(𝜔0𝑡) ou 𝑥(𝑡) = 𝐶sin(𝜔0𝑡 + 𝜑)

Dépendance sillon les conditions initiales:

𝐴 = 𝑥0 et 𝐵 = 𝑣0/𝜔0 ou 𝐶2 = 𝑥0
2 + (𝑣0/𝜔0)

2 et tan(𝜑) = 𝜔0𝑥0/𝑣0

𝑘 = 1 N/m; m = 1 kg
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3.1 Ex.: le pendule mathématique

Repère cartésien fixe:

Repère en rotation: 𝑂 Ƹ𝑒𝜌 Ƹ𝑒

𝑂ො𝑥 ො𝑦

Pour des petites oscillations   → 0  sin~   ሷ = −
𝑔

𝐿
 = −𝜔0

2


Equation d’un oscillateur harmonique avec 𝜔0 =
𝑔

𝐿

 t = Acos(𝜔0𝑡 + 𝜑0) de période 𝑇 =
2𝜋

𝜔
0

= 2𝜋
𝐿

𝑔

൞
𝑇 ∙ Ƹ𝑒𝜌+𝑚 Ԧ𝑔 ∙ Ƹ𝑒𝜌 = 𝑚( ሷ𝜌 − 𝜌 ሶ2) Ƹ𝑒𝜌

𝑚 Ԧ𝑔 ∙ Ƹ𝑒 = 𝑚(ρ ሷ+ 2 ሶρ ሶ) Ƹ𝑒

൞
−𝑇 +𝑚 𝑔 cos = 𝑚𝐿 ሶ2

−𝑚 𝑔 sin = 𝑚𝐿 ሷ


෍ Ԧ𝐹 = 𝑚 Ԧ𝑎2ème loi de Newton

− 𝑔 sin  = 𝐿 ሷLe movement du pendule ne depend pas de la masse 

Ԧ𝑎 = ሷԦ𝑟 = ( ሷ𝜌- 𝜌 ሶ2) Ƹ𝑒𝜌 + (2 ሶ𝜌 ሶ+ 𝜌 ሷ) Ƹ𝑒 + ሷ𝑧 Ƹ𝑒𝑧En coordonnées cylindriques

O

ො𝑥

ො𝑦

Ԧ𝐹 = 𝑚 Ԧ𝑔

𝑇
L

P

N.B.: 𝜔0 n’est pas ሶ



• En pratique, tout oscillateur s’amortit à cause des frottements

• Modèle:

- on ajoute une force de frottement proportionnelle 

à la vitesse: 𝐹frot = −𝑏𝑣
(signe « – »: la force s’oppose au mouvement)

- coefficient de frottement b

• Deuxième loi de Newton: Ԧ𝐹 + Ԧ𝐹𝑓𝑟𝑜𝑡 = 𝑚 Ԧ𝑎
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3.2 Oscillateur harmonique amorti

→ démo pendule
de torsion

k

ො𝑥O

m

Ԧ𝑣

https://auditoires-physique.epfl.ch/experiment/47/oscillations-amorties-pendule-de-torsion
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Solution analytique :

𝑚 ሷ𝑥 = −𝑘𝑥 − 𝑏 ሶ𝑥  ሷ𝑥 + 2𝛾 ሶ𝑥 + 𝜔0
2𝑥 = 0 avec 𝛾 =

𝑏

2𝑚
et 𝜔0 =

𝑘

𝑚

• On pose: 𝑥(𝑡) = 𝑒𝛼𝑡

• 𝑣(𝑡) = ሶ𝑥 = 𝛼𝑒𝛼𝑡

• 𝑎 𝑡 = ሷ𝑥 = 𝛼2𝑒𝛼𝑡

• 𝛼2𝑒𝛼𝑡 + 2𝛾𝛼𝑒𝛼𝑡 +𝜔0
2𝑒𝛼𝑡 = 0  𝛼2 + 2𝛾𝛼 + 𝜔0

2 = 0

3.2 Résolution éq. différentiel: 𝑚 ሷ𝑥 = −𝑘𝑥 − 𝑏 ሶ𝑥

Il s’agit d’une équation de deuxième degré en 𝛼 dont le discriminant est: ∆= 𝛾2 − 𝜔0
2

Trois cas de figure selon que le discriminant soit positif, nul ou négatif
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3.2 Solution oscillateur harmonique amorti

• A et B sont les constantes d’intégration, à déterminer par les conditions initiales

• 𝜔1 et 𝜔2 sont appelées "pulsation effective" ou "pseudo-pulsation"

ሷ𝑥 + 2𝛾 ሶ𝑥 + 𝜔0
2𝑥 = 0 avec 𝛾 =

𝑏

2𝑚
; 𝜔0 =

𝑘

𝑚
; ∆= 𝛾2 − 𝜔0

2

𝜸 < 𝝎𝟎  D < 0  (cas sous-critique)

𝜸 = 𝝎𝟎  D = 0  (cas critique)

𝜸 > 𝝎𝟎  D > 0  (cas sur-critique)
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3.2 Oscillateur harmonique amorti

pas amorti  𝜸 = 𝟎

γ = ω0
amortissement 

critique

γ > ω0
amortissement sur-

critique

γ < ω0
amortissement 
sous-critique

Comportement 
oscillatoire

Plus de comportement 
oscillatoire

Cas où l’amortissement 
est le plus rapide

γ < ω0 γ < ω0

𝑘 = 1 N/m; 

m = 1 kg



• En pratique tout oscillateur s’amortit; mais on peut 

« entretenir » les oscillations à l’aide d’une force extérieure 

• Exemples:

- Balançoire poussée par un enfant

- Voiture (avec suspension) passant sur des bosses

- Atome (électron lié) recevant une onde électromagnétique
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3.3  Oscillations forcées

Tremblement de terre

→ démos:
- résonance de deux masses 233
- https://auditoires-physique.epfl.ch/experiment/78
- https://auditoires-physique.epfl.ch/experiment/57
- - diapasons 214

https://auditoires-physique.epfl.ch/experiment/233/resonance-de-deux-masses-acoustique-et-optique
https://auditoires-physique.epfl.ch/experiment/78
https://auditoires-physique.epfl.ch/experiment/57
https://auditoires-physique.epfl.ch/experiment/214/battements-acoustiques-de-deux-diapasons


• Modèle:

- on ajoute une force périodique :  𝐹ext = 𝑓𝑐𝑜𝑠 𝜔𝑡

Example: 𝑓 = 1N et 𝜔 = 0.2s−1

• Deuxième loi de Newton:

Ԧ𝐹 + Ԧ𝐹𝑓𝑟𝑜𝑡 + Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎
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3.3 Oscillateur harmonique amorti et forcé

m

k

O ො𝑥
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3.3 Solution oscillateur harmonique forcé

Solution de l’oscillateur libre (amorti):

tend vers 0 après la phase transitoire Solution de la phase stationnaire

Résonance : fréquence à la quelle on observe le  maximum de l’amplitude C

𝑥 𝑡 = 𝑥𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑖𝑟𝑒 𝑡 + 𝐶 cos 𝜔𝑡 + 𝜑

𝐶 =
𝑓

𝑚

1

𝜔0
2 − 𝜔2 2 + 4𝛾2𝜔2

tan𝜑 =
2𝛾𝜔

𝜔2 − 𝜔0
2

𝑑𝐶

𝑑(𝜔2)
= 0 𝜔𝑟𝑒𝑠 = 𝜔0

2 − 2𝛾2 𝐶𝑚𝑎𝑥 =
𝑓

𝑚

1

2𝛾 𝜔0
2 − 𝛾2

ሷ𝑥 + 2𝛾 ሶ𝑥 + 𝜔0
2𝑥 = 𝑓 cos𝜔𝑡 avec 𝛾 =

𝑏

2𝑚
; 𝜔0 =

𝑘

𝑚

 

N.B.: C est fonction de 𝜔2 donc om 

cherche le minimum par rapport à 𝜔2



16Résonance à w = w0

ω > ω0

Phase transitoire (t < 20 s):
• Les pulsations ω0 et ω se 

superposent

• Dépend des conditions 

initiales 

Phase stationnaire:
• La pulsation ω0 est amortie 

et le système oscille avec 

la pulsation imposée w

• Ne dépend plus des 

conditions initiales

• L’amplitude dépend de ω !

3.3 Oscillateur 

harmonique forcé 

et amorti

ω < ω0 = 1 s–1

ω = ω0
Amp.  max

ω > ω0

𝑘 = 1 N/m; 

m = 1 kg;

b = 0.25 Kg/s;

f = 1 N

ω > ω0

ω < ω0 = 1 s–1



17« Résonance » à w  w0

3.3 Oscillateur 

harmonique

forcé et (pas ou 

peu) amorti

Le système répond de 

manière beaucoup plus 

sélective en fréquence.

A la résonance, 

l’amplitude devient très 

grande. 

Note: l’échelle 

verticale n’est pas la 

même que 

précédemment
ω = ω0

ω < ω0 = 1s–1

ω > ω0



• Résonances indésirables :

- Tremblement de terre

- Amortisseurs d’une voiture

- Suspension du tambour d’une essoreuse à linge

- Structure de génie civil 

(ponts, bâtiments, …)

• Résonances désirables :

- Circuits électriques dans 

un « tuner » (radio)

- Tuyaux d’orgue

- Balançoire de jardin
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3.3 Phénomènes de résonance

→ démos: pendules sur élastique
vibration de tiges plastiques

https://auditoires-physique.epfl.ch/experiment/57/resonance-mecanique-pendules-sur-elastique
https://auditoires-physique.epfl.ch/experiment/206/vibration-de-tiges-plastiques-resonance

